
Оценка целесообразности применения неразрушающих методов для профилактической диагностики изоляции кабелей 6-10 кВ

Удельная повреждаемость кабельных линий на 100 км

Год	6-10 <u>кВ</u>	35 <u>кВ</u>	110 <u>кВ</u>
2017	10,350	2,663	1,894
2018	11,697	2,353	1,997

Причины повреждений кабельных линий

Сокращение ресурса изоляции от воздействия разрушающих методов проверки изоляции

Цель и задачи исследования

Цель: предложить использование неразрушающих методов диагностики изоляции вместо разрушающих методов для профилактических испытаний.

Задачи:

- анализ существующих неразрушающих методов диагностики изоляции;
- оценка целесообразности применения этих методов.

Существующие неразрушающие методы диагностики изоляции

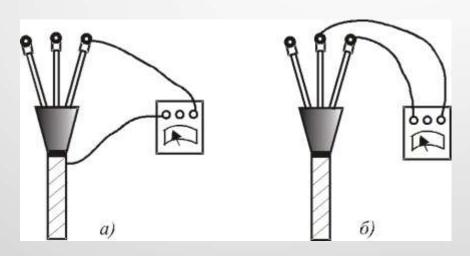
Метод измерения сопротивления изоляции

Метод измерения коэффициентов абсорбции и поляризации

Метод измерения частичных разрядов

Метод измерения тангенса угла диэлектрических потерь

Метод измерения возвратного напряжения


Тепловизионный контроль

Метод измерения сопротивления

Сопротивление изоляции измеряется при помощи мегаомметра. Для кабелей на напряжение до 1 кВ сопротивление должно составлять не менее о,5 МОм. Для высоковольтных кабелей - не ниже 10 МОм.

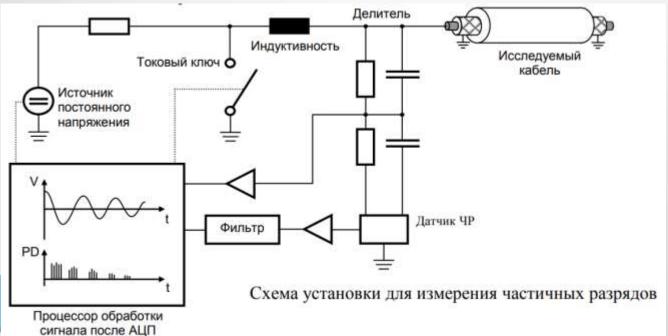
Схема измерения сопротивления:

- А) фазной изоляции
- Б) междуфазной изоляции

Метод измерения коэффициентов абсорбции и поляризации

Метод основан на измерении сопротивления, однако, критериями оценки являются значения коэффициентов абсорбции и поляризации:

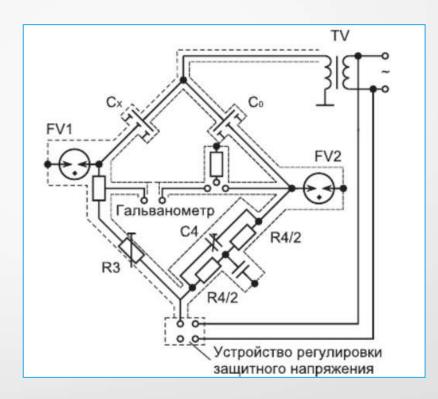
$$K_a = \frac{R_{60}}{R_{15}}$$


$$K_{\Pi} = \frac{R_{600}}{R_{60}}$$

Коэффициент абсорбции	Коэффициент поляризации	Состояние изоляции	Степень старения
Ka > 1,6	Кп > 4	Работоспособное, норма	Старение отсутствует
1,4 ≤ Ka ≤ 1,6	$3 \le K\pi \le 4$	Работоспособное с незначительными отклонениями	Низкая степень старения
1,25 ≤ Ka < 1,4	2 ≤ Kπ < 3	Работоспособное со значительными отклонениями	Средняя степень старения, наблюдается тенденция к дальнейшей деградации изоляции
1 < Ka < 1,25	$1 < K\pi < 2$	Работоспособное ухудшенное	Сильное старение, ресурс изоляции ограничен
K a ≤ 1	Кп ≤ 1	Предельное	Предельная степень старения или наличие локального дефекта

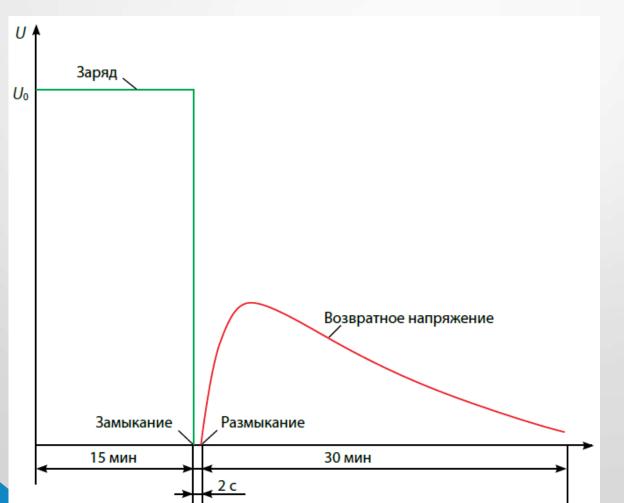
Метод измерения частичных разрядов

Суть метода: в линию подаются затухающие синусоидальные колебания, под воздействием которых в дефектах изоляции возникают частичные разряды, которые регистрируются с помощью специального оборудования. По результатам диагностики получают карту распределения ЧР по длине кабельной линии с основными характеристиками ЧР:

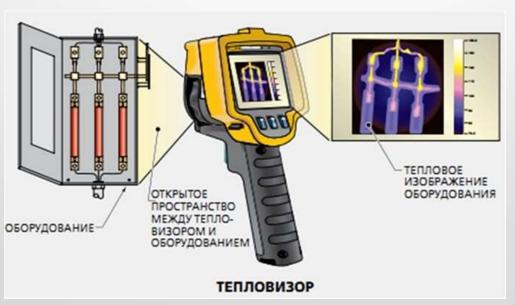

- 1. Испытательное напряжение частичных разрядов;
- 2. Напряжение возникновения частичных разрядов;
- 3. Напряжение гашения частичных разрядов;
- 4. Концентрация частичных разрядов в локальном месте;
- 5. Уровень частичных разрядов;
- 6. Карта частичных разрядов по длине кабельной линии.

Метод измерения тангенса угла диэлектрических потерь

Абсолютные значения tgδ, измеренные при напряжениях, близких к рабочему, а также его приращения при изменении испытательного напряжения температуры, характеризуют качество исходных диэлектрических материалов процесса производства кабелей.


Для измерения величины диэлектрических потерь в изоляции силовых кабеле используются мосты переменного тока, собранные по прямой или перевернутой схеме

Принципиальная схема измерительного моста


Метод измерения возвратного напряжения

Суть метода: кабеля заряжается постоянным высоким напряжением в течении 15 минут, затем электроды изоляции замыкаются на 2 секунды и в течении 30 минут происходит измерение возвратного напряжения.

Тепловизионный контроль

Обследование изоляции производится при помощи тепловизора. Тепловизионный контроль производится в рабочем состоянии оборудования, то есть под нагрузкой и напряжением. В месте возникновения дефекта будет происходить выделение большого количества тепла, что сможет зафиксировать тепловизор.

Заключение

Проведенный анализ показал, что рационально будет комплексную диагностику изоляции, основанную на применении следующего ряда методов:

- метод измерения коэффициентов абсорбции и поляризации;
 - метод измерения и анализа возвратного напряжения;
 - метод измерения тангенса угла диэлектрических потерь.

Применение такого подхода позволит рационально планировать ремонты кабельных линий и сократить затраты на аварийные ремонты кабелей.